Goldbook title
IUPAC > Gold Book
Gold G Icon
Indexes Download

Quantities

ABCDEFGHIJKLMNOPQRSTUVWXYZ
quantity symbol referenced in equation
term, T Math - math term, T T
thermal conductance, G Math - math thermal conductance, G G
thermal conductivity, λ Math - math thermal conductivity, λ λ
thermal conductivity, λ J q = − λ ∇ T
thermal resistance, R Math - math thermal resistance, R R
thermodynamic temperature, T Math - apply absolute activity, λ R T
absolute activity, λ T
absolute activity, λ λ = e μ R T
activation energy (Arrhenius activation energy) E a = R T 2 d ( ln k ) d T
activity coefficient, f,γ R T ln ( x B f B ) = μ B cd T P x − μ B * cd T p
activity coefficient, f,γ R T ln ( m B γ B m ⊖ ) = μ B − μ B − R T ln ( m B m ⊖ ) ∞
activity (relative activity), a a = e μ − μ 0 R T
Arrhenius equation k = A e − E a R T
biradical k B T
biradical T
carbonization T ∼ 1200 K
carbonization T ∼ 1600 K
cathodic transfer coefficient, α c α c ν = − R T n F ( ∂ ( ln ( | I c | ) ) ∂ E ) T , p , c i , ...
chemical equilibrium Δ G r = Δ G r o + R T ln K = 0
chemical equilibrium Δ G r o = − R T ln K
chemical potential, μ B μ B = ( ∂ G ∂ n B ) T , p , n C ≠ B
collision theory 8 k B T π m
collision theory Z AA = 2 N A 2 σ 2 π k B T m
collision theory Z AB = N A N B σ 2 π k B T μ
collision theory z AA or z AB = L σ 2 8 π k B T μ
compensation effect T Δ ‡ S
compensation effect Δ ‡ G = Δ ‡ H − T Δ ‡ S
compensation in catalysis k = A e − E R T
conditional (formal) potential E cell = E c 0 ' − R T n F ∑ i ν i ln c i
differential capacitance C = ( ∂ Q ∂ E ) T , p , μ i , ...
differential molar energy of adsorption U i σ = ( ∂ U σ ∂ n i s ) T , m , n j σ = ( ∂ U ∂ n i σ ) T , m , V g , p i , n j σ
differential molar energy of adsorption U i s = ( ∂ U ∂ n i s ) T , m , V g , p i , n j σ = ( ∂ U ∂ n i s ) T , m , V g , V s , p i , n j s
differential molar energy of adsorption ( ∂ U ∂ n i g ) T , V , n i g
diffusion potential ∇ Φ = R T ∑ D i z i ∇ c i F ∑ s i 2 D i c i
electrocapillary equation s d T − τ d p + d γ + σ α d E + ∑ Γ j d μ j = 0
electrode reaction rate constants k c = k ox e α a ( E − E c 0' ) n F ν R T = k red e − α c ( E − E c 0' ) n F ν R T
energy of activation of an electrode reaction U ‡ = − R T ( ∂ ( ln I 0 ) ∂ T −1 ) p , c j , ...
energy of activation of an electrode reaction U ‡ η = − R ( ∂ ( ln ( | I | ) ) ∂ T −1 ) p , η , c j , ...
enthalpy of activation, Δ ‡ H ° k = k B T h e Δ ‡ S ° R e − Δ ‡ H ° R T
Esin and Markov coefficient ( ∂ E ∂ μ ) T , p , σ = − ( ∂ Γ ∂ σ ) T , p , μ
Esin and Markov coefficient T
Gibbs energy of activation (standard free energy of activation), Δ ‡ G o Δ ‡ G = R T ln ( k B h ) − ln ( k T )
Gibbs film elasticity E = A ( ∂ σ ∂ A ) T , p , n i
graphitization T > 2500 K
heat capacity, C C V = ( ∂ U ∂ T ) V
heat capacity, C C p = ( ∂ H ∂ T ) p
heat capacity of activation, Δ ‡ C p o Δ ‡ C p = ( ∂ Δ ‡ H ∂ T ) p = T ( ∂ Δ ‡ S ∂ T ) p
heat capacity of activation, Δ ‡ C p o ln k = a T + b + c ln T + d T
heat capacity of activation, Δ ‡ C p o Δ ‡ C p = ( c − 1 ) R + 2 d ( R T )
ideal gas p V = n R T
immobile adsorption k T
inversion height in atmospheric chemistry d T d z
ion pair q = 8.36 × 10 6 z + z − ɛ r T pm
isokinetic relationship T = β
isosteric enthalpy of adsorption H i s = ( ∂ H s ∂ n i s ) T , p , m , n j s
isosteric enthalpy of adsorption ( ∂ H g ∂ n i g ) T , p , n i g
Krafft point 1 T
Lippman's equation ( ∂ γ ∂ E A ) T , p , μ i ≠ μ = − Q A
Marcus equation (for electron transfer) k ET = κ ET k T h exp ( − Δ G ‡ R T )
mean activity of an electrolyte in solution a ± = e ( μ B − μ B ⦵ ) ν R T
mean free path, λ λ B = 3 k T m m B
medium effect R T ln γ S 1 S 2 B = μ B o , S 2 − μ B o , S 1
metamagnetic transition T > T t
metastability of a phase k T
miscibility ( ∂ 2 Δ mix G ∂ ϕ 2 ) T , p > 0
modified Arrhenius equation T n
modified Arrhenius equation k = B T n exp − E a R T
osmotic coefficient, ϕ ϕ = μ A * − μ A R T M A ∑ i m i
osmotic coefficient, ϕ ϕ = μ A * − μ A R T ln x A
osmotic pressure, Π Π = − R T V A ln a A
osmotic pressure, Π Π = c B R T = ρ B R T M B
pH − lg a H + γ Cl − = E − E ⦵ R T ln 10 / F + lg m Cl − / m ⦵
pre-exponential factor, A k = A exp ( − E a / R T )
Rehm–Weller equation k q = k d 1 + k d K d Z exp ( Δ G ‡ R T ) + exp ( Δ ET G o R T )
retention volumes in chromatography V g = 273 V N w L T
rotational correlation time, τ c or θ D r = R T / 6 V η
standard chemical potential μ B o ( T )
standard electromotive force E ° = − Δ r G ° n F = R T n F ln K °
standard equilibrium constant, K °, K K ° = e − Δ r G ° / R T
static stability − d T d z < Γ
strong collision k B T
surface chemical potential μ i σ = ( ∂ A σ ∂ n i σ ) T , A S , n j σ = ( ∂ G σ ∂ n i σ ) T , p , γ , n j σ
surface chemical potential μ i S = ( ∂ A S ∂ n i S ) T , V S , A S , n j S = ( ∂ G S ∂ n i S ) T , p , γ , n j S
surface excess Gibbs energy G σ = H σ − T S σ = A σ − γ A s
surface excess Helmholtz energy A σ = U σ − T S σ
temperature lapse rate in atmospheric chemistry d T d z
thermal conductivity, λ J q = − λ ∇ T
thickness of electrical double layer 1 κ = ɛ r ɛ 0 R T F 2 ∑ i c i z i 2
thickness of electrical double layer 1 κ = ɛ r R T 4 π F 2 ∑ i c i z i 2
transfer activity coefficient, γ t Δ t G ° = ν R T ln γ t
transition state theory k = k B T h K ‡
transition state theory k = k B T h exp ( Δ ‡ S ° R ) exp ( − Δ ‡ H ° R T )
transition state theory k = k B T h exp ( − Δ ‡ G ° R T )
virial coefficients p V m = R T ( 1 + B V m + C V m 2 + ... )
volume of activation, Δ ‡ V Δ ‡ V = − R T ( ∂ ( ln k ) ∂ p ) T
threshold energy, E 0 Math - math threshold energy, E 0 E 0
time, t Math - bvar absorbed (spectral) photon flux density d C d t
absorbed (spectral) photon flux density d c d t
activity, A of a radioactive material A = − d N d t
Avrami equation 1 − φ c = e − K t n
Avrami equation t
chemical flux, φ d C d t = ∑ φ C − ∑ φ − C
chemical flux, φ − d A d t = φ 1
chemical flux, φ − d A d t = d P d t = 0
compartmental analysis C = A e − α t + B e − β t ...
compartmental analysis t
dilution rate, D in biotechnology d V d t
double-layer current i DL = d ( σ A ) d t
double-layer current t
emission anisotropy r t
emission anisotropy r ̄ = ∫ 0 ∞ r t I t ⁢ d t ∫ 0 ∞ I t ⁢ d t
emission anisotropy r t
emission anisotropy I t
emission anisotropy t
exponential decay A = A 0 e − λ t
fractional change of a quantity t
fractional selectivity in catalysis ξ i = d ξ i d t
growth rate in biotechnology d ( ln X ) d t
lifetime, τ c t = τ = c t = 0 e
lifetime, τ c t = τ 1/2 = c t = 0 2
magic angle I t β ∝ N t 1 + ( 3 cos 2 ⁡ β − 1 ) R t
magic angle R t
magic angle N t
magic angle I t β = 54.7 ° ∝ N t
mass-transfer-controlled electrolyte rate constant s B = − 1 c B d c B d t
mass-transfer-controlled electrolyte rate constant d c B d t
photon exposure, H p H p = ∫ t E p ⁢ d t
photon exposure, H p H p = E p t
photon flow, Φ p d N d t
photon flow, Φ p Φ p = N t
photon fluence, H p , o,F p , o H p , o = F p , o = d N p / d S = ∫ t E p , o ⁢ d t
photon fluence, H p , o,F p , o H p , o = F p , o = E p , o t
photon fluence rate, E p , o E p , o = d N p / d t d S = d H p , o / d t
photon fluence rate, E p , o E p , o = N p / t S
photon flux, q p,Φ p q p = d N p / d t
quantum yield, Φ Φ λ = d x / d t q n , p 0 1 − 10 − A λ
quantum yield, Φ d x / d t
radiant energy, Q Q = P t
radiant exposure, H H = d Q / d S = ∫ t E ⁢ d t
radiant exposure, H H = E t
radiant power, P P = d Q / d t
radiant power, P P = Q / t
rate d x d t
rate of change of a quantity d Q d t
rate of change of a quantity d m d t
rate of change of a quantity d n d t
rate of change ratio d Q 1 / d t d Q 2 / d t
rate of change ratio d m 1 / d t d m 2 / d t
rate of change ratio d n 1 / d t d n 2 / d t
rate of consumption, v n , B or v c , B v n B = − d n B d t
rate of consumption, v n , B or v c , B v c B = − 1 V d n B d t
rate of consumption, v n , B or v c , B v c B = − d [B] d t
rate of consumption, v n , B or v c , B v c B = − d [B] d t − [B] V d V d t
rate of conversion, ξ . ξ . = d ξ d t
rate of conversion, ξ . ξ . = d ξ d t = 1 ν i d n i d t
rate of formation, v n , y or v c , y v n Y = d n Y d t
rate of formation, v n , y or v c , y v c Y = 1 V d n Y d t
rate of formation, v n , y or v c , y v c Y = 1 V d n Y d t = d Y d t
rate of formation, v n , y or v c , y v c Y = d Y d t + Y V d V d t
rate of reaction, v v = − 1 a d [A] d t = − 1 b d [B] d t = 1 p d [P] d t = 1 q d [Q] d t
rate of reaction, v ξ . = d ξ d t
rate of reaction, v ξ . = − 1 a d n A d t = − 1 b d n B d t = 1 p d n P d t = 1 q d n Q d t
rate of reaction, v − d [A] d t
rate of reaction, v d [P] d t
residual emission anisotropy r t = ( r 0 − r ∞ ) exp ( − t τ c ) + r ∞
rotational correlation time, τ c or θ r t = r 0 exp ( − t τ c )
rotational correlation time, τ c or θ r t
rotational frequency, f rot in centrifugation f rot = d N d t
steady state (stationary state) − d [X] d t = d [A] d t + d [D] d t
steady state (stationary state) d [X] d t = 0
steady state (stationary state) d [D] d t = − d [A] d t = k 1 k 2 [A] [C] k −1 + k 2 [C]
steady state (stationary state) d [D] d t = k 2 [X] [C]
surface shear viscosity ζ s = Δ γ d ( ln A ) d t
time constant, τ c of a detector 1 − exp ( − t / τ c )
time constant, τ c of a detector t = τ c
transfer d Q d t
transfer d m B d t
transfer d n B d t
time constant, τ c of a detector Math - math response time, τ R of a detector τ c
Math - apply time constant, τ c of a detector 1 − exp ( − t / τ c )
time constant, τ c of a detector t = τ c
time, t of centrifugation Math - math time, t of centrifugation t
torque, T Math - apply electric dipole moment, p T = p × E
torque, T T
total consumption time , t tot in flame emission and absorption spectrometry Math - math total consumption time , t tot in flame emission and absorption spectrometry t tot
total velocity of the analyte, ν tot in capillary electrophoresis Math - math total velocity of the analyte, ν tot in capillary electrophoresis ν tot
total velocity of the analyte, ν tot in capillary electrophoresis ν tot = ν ep + ν eo
transit time, t ts in flame emission and absorption spectrometry Math - math transit time, t ts in flame emission and absorption spectrometry t ts
transition wavenumber, ν ˜ Math - math transition wavenumber, ν ˜ ν ˜
transmittance, T, τ Math - math transmittance, T, τ T
transmittance, T, τ T = P λ P λ 0
Math - math transmittance, T, τ τ
transport number, t Math - math transport number, t t
travel time, t tv in flame emission and absorption spectrometry Math - math travel time, t tv in flame emission and absorption spectrometry t tv
turbidity, τ in light scattering Math - math turbidity, τ in light scattering τ