Goldbook title
IUPAC > Gold Book
Gold G Icon
Indexes Download

Quantities

ABCDEFGHIJKLMNOPQRSTUVWXYZ
quantity symbol referenced in equation
wavelength, λ Math - mfenced absorbed (spectral) photon flux density q p , λ 0 1 − 10 − A λ V
absorbed (spectral) photon flux density q n , p , λ 0 1 − 10 − A λ V
absorbed (spectral) photon flux density A λ
absorbed (spectral) photon flux density λ
absorbed (spectral) radiant power density P λ 0 1 − 10 − A λ V
absorption spectrum λ
absorption spectrum 1 λ
actinic flux S λ E λ = ∫ θ ∫ φ L λ θ φ cos ⁡ θ sin ⁡ θ ⁢ d θ ⁢ d φ
actinic flux S λ h c λ
brightness of a laser dye ɛ λ
brightness of a laser dye Φ f ɛ λ
conversion spectrum λ
Dimroth–Reichardt E T parameter E T = 2.859 × 10 −3 ν = 2.859 × 10 4 λ −1
Dimroth–Reichardt E T parameter λ
dispersion (for spectroscopic instruments) Dispersion of a material = d n d λ
dispersion (for spectroscopic instruments) λ
dispersion (for spectroscopic instruments) angular dispersion = d Φ d λ
dispersion (for spectroscopic instruments) linear dispersion = d x d λ
dispersion (for spectroscopic instruments) d λ d x
excimer lamp λ = 354 nm
excimer lamp λ = 126 nm
isosbestic point A λ l −1 = ∑ i = 1 n ɛ i λ c i
isosbestic point A λ
isosbestic point λ
Mie scattering r ≪ λ
Mie scattering r ≫ λ
Mie scattering r ≈ λ
molar absorption coefficient, ɛ ɛ λ = 1 c l lg ( P λ 0 P λ ) = A λ c l
molar absorption coefficient, ɛ P λ 0
molar absorption coefficient, ɛ P λ
molar absorption coefficient, ɛ ɛ λ
quantum yield, Φ Φ λ = number of events number of photons absorbed
quantum yield, Φ Φ λ = amount of reactant consumed or product formed amount of photons absorbed
quantum yield, Φ Φ λ = d x / d t q n , p 0 1 − 10 − A λ
quantum yield, Φ A λ
radiance, L L = ∫ λ L λ ⁢ d λ
radiant energy, Q Q = ∫ Q λ ⁢ d λ
radiant exitance, M M = ∫ λ M λ ⁢ d λ
radiant intensity, I I = ∫ λ I λ ⁢ d λ
radiative energy transfer a = 1 Φ D 0 ∫ λ I λ D λ 1 − 10 − ɛ A λ c A l ⁢ d λ
radiative energy transfer I λ D λ
radiative energy transfer ɛ A λ
radiative energy transfer Φ D 0 = ∫ λ I λ D λ ⁢ d λ
radiative energy transfer a = 2.3 Φ D 0 c A l ∫ λ I λ D λ ɛ A λ ⁢ d λ
radiometry h c λ
Rayleigh scattering λ −4
reflectance, ρ ρ λ = P λ refl P λ 0
reflectance, ρ ρ λ = ( n 1 − n 2 ) 2 ( n 1 + n 2 ) 2
solar conversion efficiency λ = 0
solar conversion efficiency λ = ∞
spectral sensitivity, S λ S λ
spectral sensitivity, S λ S ac λ = Φ λ ɛ λ obs = sensitivity or actinometric factor
spectral sensitivity, S λ Φ λ
spectral sensitivity, S λ λ obs
Z-value Z = 2.859 × 10 4 λ
Math - math optical parametric oscillator λ p
optical parametric oscillator 2 × λ p
optical parametric oscillator λ p = 355 nm
Math - math optical parametric oscillator λ s
Math - math optical parametric oscillator λ I
Math - apply optical parametric oscillator λ i ≈ 3.15 μm
optical parametric oscillator λ i ≈ 870 nm
wavenumber, σ, ν ˜ Math - math conversion spectrum σ
wavenumber, σ, ν ˜ σ
Math - apply Dimroth–Reichardt E T parameter E T = 2.859 × 10 −3 ν = 2.859 × 10 4 λ −1
Dimroth–Reichardt E T parameter ν
Math - math spectral fluence rate, E λ , o ν ˜
weight, G Math - math weight, G G
weight, G G = m g
work, w,W Math - math internal energy, U w
internal energy, U Δ U = q + w
work, w,W w = ∫ F · d r
Math - math work, w,W W